# Renewable Energy in the Built Environment

Technical Information, Economics, and Myths



#### The Need: Why use renewables?



TopLink 🌐 English 🗸

Regional Agenda Climate Change Environment and Natural Resource Security Media, Entertainment and Information

#### Climate change is the world's biggest threat, according to a new global survey

#### **HEALTH AFFAIRS BLOG**

RELATED TOPICS: AIR POLLUTION | GLOBAL CLIMATE CHANGE | ASTHMA

#### Climate Change Is The Greatest Threat To Human Health In History

David Introcaso

SPECIAL REPORT

#### **Global Warming of 1.5 °C**

The Greatest Threat To Global Security: Climate Change Is Not **Merely An Environmental Problem** 





#### Twice the normal daily rainfall in first 16 days of February - Met Éireann

-Highest rainfall since the 1850's.

Temperature change won't be homogeneous. Ireland will be hit hard in the long run.



## Why target the built environment?



Source:



VISIONARY PROJECT PARTNERS

What impact can renewables have in the builtenvironment (BE)?

# Huge reduction in operational emissions.

Significant savings on energy bills for owners/occupiers.

Green credentials, protection against increasing energy prices, participation in energy market.



# Technologies

## <u>Renewable Technology Options in the Built</u> <u>Environment:</u>

- Geothermal Power
- Heat pumps

- Biomass & Products
- Biomethane
- Bio Diesel
- Bioethanol
- HVO
- Wood chip/pellets

• Solar Power

- Solar PV
- Solar Thermal

#### Heat Pumps

- Ground-to-air (very high efficiency)
- Water-to-air (very high efficiency)
- Air-to-air (lower efficiency)
- Air-to-water (lower efficiency)



Essentially acting like a "backwards" fridge, electrifying space and water heating needs



#### Heat Pumps

- Ground-to-air (very high efficiency)
- Water-to-air (very high efficiency)
- Air-to-air (lower efficiency)
- Air-to-water (lower efficiency)

- Can supply both heating and cooling.
- Technologically mature.
- Growing market penetration.
- Very good energy efficiency device.
- Unlike true renewable devices, requires a source of power.



#### Heat Pumps

- Ground-to-air (very high efficiency)
- Water-to-air (very high efficiency)
- Air-to-air (lower efficiency)
- Air-to-water (lower efficiency)

- Air source still most common due to capital costs.
- Ground source much more efficient, especially in winter.
- Ground temperatures in the 7-21 degrees, typically better in the south and within Dublin.
- Water source very site dependent.
- Hot water pumps experience a comparatively low Coefficient of Performance (COP) due to the temperatures required.





- Biomethane
- Biodiesel
- Bioalcohols
- Wood chip/pellets







- Biomethane
- Biodiesel
- Bioalcohols
- Wood chip/pellets

- Biomethane- upgraded biogas, produced by anaerobic respiration in a bioreactor.
- Biodiesel- (e.g. HVO) made through transesterification of fats and oils. Diesel replacement.
- Bioalcohols- (e.g. bioethanol) made through fermentation process of biomass. Petrol replacement.
- Wood chip/pellets- direct combustion of waste products (ideally).



- Biomethane
- Biodiesel
- Bioalcohols
- Wood chip/pellets

- Carbon neutral.
- Source of Biomass crucial environmental factor.
- Suitability highly dependent on current usage.
- Can be an effective replacement of fossil fuels when electrification is not possible.
- Industry still immature in Ireland.
  - Low production volumes.
  - Poor visibility and availability.

#### Solar Power

- Solar PV
- Solar Thermal

• The obvious fit for the built environment.

 Technologically mature, directly harnessing the sun's energy.



#### Solar Power

- Solar PV
- Solar Thermal

Severely underutilized in Ireland compared to UK:

- Ireland 2019 installed capacity: ~25MW.
- UK 2019 installed capacity: ~13,000MW.



# Solar Thermal

#### Solar Power

- Solar PV
- Solar Thermal

#### Solar Power

- Solar PV
- Solar Thermal

### Solar Thermal

- Economic solution for hot water supply due to high conversion efficiency (up to 70%).
- Demand decreasing rapidly in recent years due to drop in price for Solar PV.
- Requires replacement of fluids every 5-10 years to remain efficient.



#### Solar PV- Rooftop

#### Solar Power

- Solar PV
- Solar Thermal

## Solar PV - Facade

#### Solar Power

- Solar PV
- Solar Thermal

#### Solar Power

- Solar PV
- Solar Thermal

#### Solar PV



VISIONARY PROJECT PARTNERS



- Solar PV
- Solar Thermal





#### Solar Power

- Solar PV
- Solar Thermal

- Arranged in "Strings" of modules, with up to two strings connected to a DC/AC inverter
- PV systems completely modular, can be designed to any size
- Module efficiency growing with time
- Current market average around 17-19%
- Produces high quality energy (electricity)



#### Solar Power

- Solar PV
- Solar Thermal

- Can be combined with battery storage systems or diversion controllers to maximise self-usage and prevent grid spillage.
- Many variables affecting output and production profile- tilt, orientation, shading, string layout...





- Solar PV
- Solar Thermal

## Solar PV

• Not all systems are equal!

• Huge variety in components available.

• Tier 1 is not everything.





- Solar PV
- Solar Thermal

- Good systems have 30+ year lifetime.
- Inverter most likely point of failure (and therefore should be the highest quality component).



#### Solar Power

- Solar PV
- Solar Thermal

- Can supply a significant proportion of a building's electricity needs.
- Level of self consumption can be optimized through array layout.
- Small amount of O&M per year recommended.



## Economics



- Solar PV
- Solar Thermal

#### Solar PV

# Rapidly decreasing system price is driving uptake







- Solar PV
- Solar Thermal

### Solar PV

Economics of payback highly dependent on current cost of grid energy and current rate of usage.



#### Solar Power

- Solar PV
- Solar Thermal

### Solar PV

Best projects (with grant support) can have:

- 3-4 year payback.
- 25%+ Internal Rate of Return (IRR).



Synergies and other Technologies

### Solar PV and Heat Pumps



PROFILE OF ROUGHLY MATCHES PROFILE OF USAGE. WAY TO TRULY GREEN HEAT- A HUGE CHALLENGE. HOLISTIC APPROACH TO ENERGY SYSTEM, HUGE ECONOMIC SAVINGS OVERALL.

## Solar PV and Infrared Heating Panels



A good solution when a heat pump is not possible



Gives a very high quality of heat and excellent thermal comfort



Heating surfaces instead of air is much more efficient when there is a lot of air flow

## Solar PV and Solar Thermal



Can more fully utilize a complex roof space with shading concerns



Mix can be optimized to match profile of consumption.

## Solar PV and EV Chargers



HIGHLY EFFECTIVE WAY TO GREEN TRANSPORT. HIGH VALUE PRODUCT (EV ELECTRICITY VALUED AT AROUND €0.3/KWH). REDUCES GRID EXPORT.

EXCELLENT FOR COMPANY IMAGE.

# Combined Heat & Power (CHP) and Biogas/Biomass



CHP typically highly efficient, but requires fuel (like a heat pump).



Replacing fuel with green fuel can green electricity and heat at the same time.

Myths



## Myth : Energy Payback

"Renewable technologies never pay back their embodied energies!"



#### Myth : Government Support Needed

"Renewables need government support to be economically worthwhile."



## Myth : Renewables are too intermittent

"Renewables can't replace fossil fuels."

## KRA Renewables Role

# **KRA**renewables.

- Independent built environment renewableenergy consultants.
- Trusted project partners, managing projects from first conception to post-completion.
- Match renewable solutions to client's goals, instead of a cut-and paste solution.
- 20 years expertise in the built environmentensuring renewable energy solutions don't compromise integrity of building fabric.



# Thank you for your attention

Finnbar Howell, h.BSc, MA, MSc

**KRA Visionary Project Partners** 

**KRA Renewables** 

087 799 0635

20 Harcourt Street, Dublin 2